Ensemble sampler for infinite-dimensional inverse problems
نویسندگان
چکیده
We introduce a new Markov chain Monte Carlo (MCMC) sampler for infinite-dimensional inverse problems. Our is based on the affine invariant ensemble sampler, which uses interacting walkers to adapt covariance structure of target distribution. extend this first time function spaces, yielding highly efficient gradient-free MCMC algorithm. Because our does not require gradients or posterior estimates, it simple implement and broadly applicable.
منابع مشابه
Geometric MCMC for infinite-dimensional inverse problems
Bayesian inverse problems often involve sampling posterior distributions on infinite-dimensional function spaces. Traditional Markov chain Monte Carlo (MCMC) algorithms are characterized by deteriorating mixing times upon meshrefinement, when the finite-dimensional approximations become more accurate. Such methods are typically forced to reduce step-sizes as the discretization gets finer, and t...
متن کاملOn Infinite-dimensional Hierarchical Probability Models in Statistical Inverse Problems
In this article, the solution of a statistical inverse problem M = AU + E by the Bayesian approach is studied where U is a function on the unit circle T, i.e., a periodic signal. The mapping A is a smoothing linear operator and E a Gaussian noise. The connection to the solution of a finite-dimensional computational model Mkn = AkUn+Ek is discussed. Furthermore, a novel hierarchical prior model ...
متن کاملinfinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Discretization-Invariant MCMC Methods for PDE-constrained Bayesian Inverse Problems in Infinite Dimensional Parameter Spaces
In this paper we target at developing discretization-invariant, namely dimension-independent, Markov chain Monte Carlo (MCMC) methods to explore PDEconstrained Bayesian inverse problems in infinite dimensional parameter spaces. In particular, we present two frameworks to achieve this goal: Metropolize-then-discretize and discretize-then-Metropolize. The former refers to the method of first prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics and Computing
سال: 2021
ISSN: ['0960-3174', '1573-1375']
DOI: https://doi.org/10.1007/s11222-021-10004-y